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Electric dipole polarizabilities are computed for a large number of 2-, 3-, 4-, 10-, 11-, 12-, 18-, 19-, and 20-
electron atoms and ions. These results are all obtained within the framework of the uncoupled Hartree-Fock 
approximation. All calculations are made using analytical Hartree-Fock wave functions. For the lighter 
atoms and positive ions the results of these calculations are in fairly good agreement with the experimental 
and other more accurate theoretical values. However, for the heavier atoms and ions the results are too large. 
It is also found that great care must be exerted in selecting self-consistent functions for use in making polar
izability calculations. 

I. INTRODUCTION 

THE polarizability is a property of atoms which 
is dependent primarily on the behavior of the 

outermost electrons in an external electric field. Since 
there is also an effect which depends upon the field 
gradient we will define the property of interest here. 
Thus, if an atom is placed in a uniform external electric 
field F it becomes polarized and receives an induced 
electric dipole moment ii—aF. Then, assuming the atom 
has no permanent moment and that the ground elec
tronic state is nondegenerate the energy E in the field 
is given by1 

E=Eo *F2+- (1) 

Here E0 is the free atom energy and a is the dipole 
polarizability and is the subject of this paper. 

Since the greatest contribution to a comes from the 
most loosely bound, outer electrons, which contribute 
very little to the total energy, studies of computed 
polarizabilities enable one to infer qualitative informa
tion concerning the accuracy of various approximate 
wave functions at large radial distances. This offers an 
independent means of assessing wave functions as the 
computed free atom energies give information mostly 
concerning the accuracy of the wave function near the 
nucleus. More specifically, in the polarizability calcula
tions presented here it is shown that use of poor 
solutions to the Hartree-Fock equations can change the 
polarizability by a factor of 2 while the free atom 
energies differ by =0.0005 a.u. 

In this paper the atomic dipole polarizabilities have 
all been computed from analytical Hartree-Fock wave 
functions using the uncoupled Hartree-Fock approxima
tion. Since two comprehensive review papers on polariz-

* Work supported in part by U. S. Air Force Office of Scientific 
Research Grant No. AF-AFOSR= 191-63. 

1 L. Pauling and E. B. Wilson, Introduction to Quantum Mechan
ics (McGraw-Hill Book Company, Inc., New York, 1935), 
p. 226. 

abilities have recently appeared2,3 the next section on 
the theory will be greatly abridged to include only de
tails necessary for clarity. 

II. THEORY 

A. Variation-Perturbation Theory 

The Hamiltonian H for an atom in a uniform electric 
field is given in atomic units by4 

# = # o + # i = # o + F . r . (2) 

Here Ho is the usual atomic Hamiltonian in the absence 
of the external field. For simplicity, the origin of the 
coordinate system for the radius vector r is chosen at 
the nucleus. 

For the applications considered here one can assume, 
without loss of generality, that the electric field is 
along the z axis so that Eq. (2) reduces to 

N 

H=HQ+F ^ %i (summed over all electrons). (3) 

We approximate the solution to the Schrodinger 
equation, which results from Eq. (3), using perturbation 
theory. Thus, following the usual arguments5 one finds 
that the zeroth-, first-, and second-order functions, i.e., 
\po, \f/i7 and ^2 must satisfy 

Hoto-E0fa=0, (4) 

Hoti+H1x[/0-Eoti-Erto=0, (5) 

Hofa+Hdi-E^-E^-E^Q. (6) 

2 A. Dalgarno, Advan. Phys. 11, 281 (1962). 
3 K. S. Pitzer in Advances in Chemical Physics, edited by I. 

Prigogine (Interscience Publishers, Inc., New York, 1959), Vol. 2, 
p. 59. 

4 E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., 
New York, 1961), p. 380. 

5 H. A. Bethe and E. Salpeter, Quantum Mechanics of One- and 
Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p. 122. 
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In addition, from Eqs. (4)-(6) one finds that the 
first- and second-order energies are obtained from 

2 = / ^0-BlTpldT , 

(7) 

(8) 

respectively. Provided the ground state is nondegenerate 
one can show by direct substitution, for atoms, that 
£ i = 0 . 

From Eq. (8) it is clear that the principal problem 
in obtaining polarizabilities, assuming \[/0 is known, lies 
in solving Eq. (5) for the first order function \j/\. 
Perhaps the most successful of the methods proposed for 
solving Eq. (5) are the Sternheimer numerical integra
tion scheme6 and the variational method.5 In this work 
we use the latter approach. 

Consider the functional 

Wl= Ui'H^'dr-EoUiWdT 

+2Ul'H1xPodr. (9) 

The condition that / [ ^ I ' ] have a stationary value, i.e., 
5 / [ ^ i / ] = 0 reduces to Eq. (5) since Ei=0. Thus, that 
function rpi for which 5 / [^ i / ] = 0 has the property 

•WWIM " * - / 
\l/oHi\pidT. 

In addition, as Karplus and Kolker observe,7 the second 
variation b2J\jpi~} is positive so that J[$i] must be a 
minimum. Essentially, then the variational procedure 
usually followed in approximating \f/\ consists in con
structing a trial function \pi which contains a number of 
parameters with respect to which / f t /V] is minimized. 
Once J\jpi~] is minimized a is obtained from 

a= - (2/F2)E2= - ( 2 / F 2 ) / [ > i ] . (10) 

B. Uncoupled Hartree-Fock Approximation 

The field-independent Hartree-Fock wave function 
for atoms, having only closed shells, has the form8 

I X\ X\ %2 *v2* ' ' Xn Xn\ 

*M ). (ii) 

Since this function is not an eigenfunction of Ho the 
perturbation Eqs. (4)-(9) are not consistent. Thus, 

6 R. M. Sternheimer, Phys. Rev. 96, 951 (1954). 
7 M. Karplus and H. J. Kolker, J. Chem. Phys. 38,1263 (1963). 
8 Notation similar to that used by H. Eyring, J. Walter, and 

G. E. Kimball, Quantum Chemistry (John Wiley & Sons, Inc., 
New York, 1954), p. 232. 

several assumptions are made in applying the theory 
of the previous section. These are: 

(1) The external field free Hamiltonian H0 can be 
replaced by the corresponding Hartree-Fock Hamil
tonian Ho and the corresponding energy E0 by E0' 
where 

2n r r 

Ho'= E fli-ES / / 
i-\ i<k J J 

i<k J J 

\%i(ri)\2\xk(rk)\
2 

dndrk 
rik 

+ZE 
Xi(ri)xk(fi)xi(rk)xk(rk) 

dndrk (12) 
Uk 

2n r f 

£»'= Ee^-EE / / 
i=l i<k J J 

\%i(ri)\2\xk(rk)\
2 

•dndrk 
rik 

i<k J J 
+EE 

%i(ri)xk(ri)xi(rk)xk(rk) 
dndrk* (13) 

Uk 

(2) Although the Hartree-Fock wave functions \po 
are analytical functions of the Roothaan type,9,10 \po is 
nevertheless assumed to be an exact eigenfunction of 
Ho'. 

The first assumption is the fundamental approxima
tion made in what Dalgarno2 calls the uncoupled 
Hartree-Fock method. I t would, of course, have been 
preferable to use solutions to the Hartree-Fock equa
tions which minimize the total energy in the external 
field (coupled Hartree-Fock approximation); however, 
this approach is more laborious and it has successfully 
been carried out only for the helium sequence.11 

C. Choice for First-Order Wave Function 

Some insight into a suitable form to choose for the 
first-order wave function can be gained from a study of 
the hydrogen-like atom polarizability. Hence we will 
briefly consider this problem. 

First it is clear that when considering forms for \pi 
for this problem, that since the second-order energy Ei 
is obtained from 

- / • 
E 2 = / if/iHiif/odr, (14) 

one can restrict choices of the trial first-order function 
ypi to functions for which f$\H$odr is nonzero. 
One possible such choice is 

T f r ^ l M , (15) 
where 

h=F(C0z+C1zr+C2zr2+Cszr*+ • • • ) . (16) 

After substituting this form into the functional, Eq. (9), 

9 C. C. J. Roothaan, Rev. Mod. Phys. 23, 0 (1951). 
10 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960). 
11 A. Dalgarno, Proc. Roy. Soc. (London) A251, 289 (1959). 
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one finds on requiring that 

dd 
- = 0 i = 0, 1, 2, 3, (17) 

that 
1 1 

Co— , Ci= , Cz — Cz—C^— - - • = 0 
Z2 2Z 

(Z=atomic number). (18) 

I t can be shown2 that Eq. (15) with the coefficients 
specified by Eqs. (18) is the exact first-order function 
for the hydrogen-like atom problem. This result 
suggests a form the perturbed orbitals can take. 

Next, since we restrict \f/Q to a single determinant 
antisymmetrical atomic orbital product function, it 
would seem consistent and convenient to assume also a 
first-order function to be of the orbital product form. 
Thus, proceeding from these considerations we can 
choose \pi to be of the form 

*/= £ uh, (19) 

where 

Uk= 
X\ X\ X% <Jv2 * Xk il]c ^k' Xn ^n ( Xi X\ %2 

a 3 a a & a 8/ 

and 

( X\ X\ %i %i* * " Xk Xk /Ifc' ' ' 0C"n OCn\ 

) (20) 
a 0 a &-•- a / 3 • • • a p / 

hk=Fz(Cok+C1*r+C2kr2+CzW+ • • • ) . (21) 

This choice for \pi seems to have first been proposed 
by Buckingham.12 Use of a more general form for the 
perturbation function would be indicated if convergence 
were slow. Thus, for example, one might argue that 
negative or even nonintegral powers of r should be 
included in such event. Indeed, Pople and Schofield13 

have used a numerical function for the r dependence. 
More careful consideration of this point will be deferred 
to the discussion of the numerical results. 

D. Formulation 

The formulas from which actual computations are 
made are obtained by substituting the Hartree-Fock 
Hamiltonian and energy, Eqs. (12) and (13), and the 
wave function, Eqs. (11), (19), (20), and (21) into the 
functional as given by Eq. (9). Once this has been done 
the functional can be reduced by straightforward means 
so that one obtains 

J W ] = ZJk(uk), (22) 

12 R. A. Buckingham, Proc. Roy. Soc. (London) 160, 94 (1937). 
13 J. A. Pople and P. Schofield, Phil. Mag. 2, 591 (1957). 

where 

Jk(Uk) = (xk\Vkk'Vhk\xk)+Mxk\Fhkz\xk) 

n 

- 2 E {(«*— €/)(avIkk |xk)(xk |h |x3) 

+2(xk | hk | Xj)(xk | Fz | Xj)}. (23) 

Because of the form J\jpi^\ takes in Eq. (22) the 
condition 

8 / [^ i , ] = 0 (24) 

leads to 8Jk(Uk) = 0 for each orbital xk separately. 
Since the only adjustable parameters in hk are coeffi
cients [see Eq. (21)] the condition 5Jk(Uk) = 0 is 
equivalent to requiring 

dJk(Uk)/dCi*=0, i = 0 , 1, 2, 3, 4, • • •. (25) 

Here the k superscript denotes the orbital and the i 
denotes the power of r in the polynominal in r. 

The conditions listed as Eqs. (25) lead to the set of 
linear equations 

2—t -A-ip L/p £>i , 
P 

where 

AiP
k=(xk \ r*>+i+ (p+i+pi)z2r*>+i-2 \ xk) 

(26) 

- 2 X) ( e * - €,-)(*,-1 zr* \ xk)(xk | zr*> \ x3) (27) 
y=i 

and 

Bih=2(xk | zr11 Xk)—2 X) (% I zr* | xk){xk \ z \ xj). (28) 
3=1 

After the coefficients Cp
k of Eqs. (26) are found for 

each orbital the contribution to the polarizability from 
the &th orbital is obtained from [cf. Eqs. (8) and (10)]. 

• 2 E W . (29) 

The total polarizability is obtained by summing the 
contribution of each orbital so that 

« = - 2 E E W . 
k p 

Finally, in cgs units we have 

a = - 2 a 0
3 E E C / £ / , 

k p 

(30) 

(31) 

where <z0 is the atomic unit of length and the Bv
k are 

given by Eq. (28). 

III. RESULTS 

Using the method outlined in Eqs. (26)-(31) the 
polarizability calculations are performed on an IBM 
7090 computer. In each case the analytical Hartree-
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Atom 
or 

ion 

ir 
He 
Li+ 
Be2+ 

B 3 + 

C 4 + 

N6 + 

Li 
Be+ 

B 2 + 

C3+ 

N 4 + 

QB+ 

Be 
B + 

C2+ 

N 3 + 

0 4 + 

F 6 + 

F~ 
Ne 
Na+ 
Mg2+ 
Al3+ 

Si4+ 

p5+ 

Na 
Mg+ 
Al2+ 

Si3+ 

p4+ 

S5+ 

Mg 
A1+ 
Si2+ 

p3+ 
S 4 + 

CP+ 

cr~ 
Ar 
K+ 

Ca2+ 

SC3+ 

T i 4+ 

K 
Ca+ 
Ca 

TABLE I . 

This 
paper* 

16.7° 
0.220d 

0.0304d 

0.00815d 

0.00304d 

0.00138d 

0.000712d 

21.0d 

2.48d 

0.654d 

0.245d 

0.112d 

0.0586d 

9.53d 

1.96d 

0.653d 

o!280d 

0.140d 

0.0781d 

1.81° 
0.409f 

0.163s 
0.0801d 

0.0446d 

0.0271d 

O.Ol75d 

27.1h 

5.51* 
2.05* 
0.994* 
0.5561 

0.340* 

19.4* 
5.89* 
2.571 

1.35* 
0.792* 
0.502* 
6.23e 

2.32* 
1.08* 
0.620i 

0.391* 
0.263* 
011851 

59.6k 

14.3h 

48.9h 

Calculated and experimental values 
of dipole polarizabilities. 

Dipole polarizability (10-24 cm3) 
Other 

calculations13 

13.4-31.4 
0.196-0.224 
0.024-0.08 
0.007-0.04 
0.00288-0.02 
0.0013-0.00139 

20-25.1 
3.65 
1.16 
0.509 
0.267 
0.157 

4.5-9.6 

1.2-1.9 
0.367-0.62 
0.145-0.26 
0.072-0.10 
0.045-0.050 
0.027 

22.9-24.6 

7.19 
2.40 
1.24-0.83 
0.73 
0.286-0.35 

41.6-44.4 

a Superscripts in this column indicate the 
wave functions used. 

Experimental 

30.2k 

0.2068±0.00021 

0.025m 

0.007m 

0.0033m 

0.0015m 

22±2n 

0.99° 
0.398P 
0.17m 

0.10m 

0.053m 

0.043° 

21.5±2n 

7.0±1.8-7.4±1.8<i 

3.05° 
1.63P 
0.80m 

0.54m 

38±4n 

19.7db0.6-22.5±0.6^ 

sources of the zeroth-order 

b Taken from Dalgarno's review paper, Advan. Phys. 11, 281 (1962) 
tx-v^oni- T .if Viiii m iar>f»1p>̂ f rr»nir> SPHPS fnr whirh th(* valnps arp takpn frnm 

Fock orbitals are 

where 
<£? 

of the general form 

#/b = 2 I Gi&i 
i 

.= N-rnier^irVi. ~, • * • » % ' v ' •*• i t i 

> 

n(0,</)). 

These results are presented in Table I for a: 
atoms 

Atom 
or 

ions 

H" 

He 

Li+ 

Li 

Be 

o— 
F~ 

Ne 

Na+ 

Na 

ci-
Ar 

and ions 

TABLE II, 

^ 0 

a 
b 
c 
d 
e 
d 
e 
c 
f 
d 
e 
c 
f 
d 
e 
g 
h 
i 
g 
e 
h 
j 
i 
f 
d 
e 
d 
i 
e 
k 
1 
k 
m 
n 
0 

k 
1 
P 
q 
m 

together with 

, Dependence of dipol< 

the results 

(32) 

(33) 

number of 
of other 

3 polarizabilities on 
zeroth order wave functions. 

No. of 
basis 

functions 
used 
s p 

5 
5 

11 
4 
3 
4 
3 

12 
6 
5 
5 

12 
6 
5 
5 
5 
5 
7 
5 
5 
5 
7 
7 
6 
5 
5 
5 
7 
5 
8 
7 
7 
9 
7 
3 
6 
7 
8 
7 
9 

4 
5 
6 
4 
4 
5 
5 
6 
4 
4 
4 
4 
6 
4 
5 
3 
4 
7 
6 
2 
4 
5 
8 
7 
7 

Total energy 
of 

unperturbed 
state 
(a. u.) 

-0.48793 
-0.4879293 
-2.861680 
-2.861679 
-2.861680 
-7.2364136 
-7.236414 
-7.432727 
-7.432726 
-7.432726 
-7.432726 

-14.57302 
-14.57302 
-14.57301 
-14.57302 
-74.48032 
-74.48442 
-99.45921 
-99.45936 
-99.45937 
-99.45936 

-128.54318 
-128.5470 
-128.5470 
-128.54698 
-128.5471 
-161.6768 
-161.6769 
-161.6770 
-161.8589 
-161.8586 
-161.8587 
-459.5750 
-459.5767 
-525.7653 
-526.7841 
-526.8171 
-526.8173 
-526.8174 
-526.814 

Orbital 
energy of 

the outmost 
orbital 

-0.04622 
-0.917956 
-0.91795 
-0.91795 
-2.79234 
-2.79236 
-0.196323 
-0.19632 
-0.19632 
-0.19632 
-0.309270 
-0.30927 
-0.30927 
-0.30927 

0.14478 
0.12547 

-0.1810072 
-0.18087 
-0.18083 
-0.18079 
-0.84615 
-0.8501921 
-0.85048 
-0.85020 
-0.85034 
-1.79629 
-1.797188 
-1.79718 
-0.18211 
-0.18199 
-0.18210 
-0.1518 
-0.14988 
-0.50633 
-0.5840 
-0.59071 
-0.59125 
-0.59093 
-0.589 

Polariz
ability 

(10"24 cm3) 

8.211 
16.67 
0.2204 
0.2203 
0.2204 
0.03036 
0.03036 

21.02 
20.97 
21.00 
20.98 
9.523 
9.525 
9.541 
9.522 

52.33 
99.42 

1.865 
1.818 
1.816 
1.808 
0.4621 
0.4086 
0.4140 
0.4149 
0.4118 
0.1633 
0.1626 
0.1626 

27.15 
27.17 
27.06 

7.305 
6.227 
1.365 
2.039 
2.293 
2.344 
2.320 
2.699 

M. R. Flannery and A. L. Stewart, Proc. Phys. Soc. (London) 82, 188 
(1963). 

« M. Yoshimine (unpublished). 
d E. Clementi, J. Chem. Phys. 38, 996 (1963). 
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j P. Bagus (private communication). 
kS. Geltman, Astrophys. J. 136, 935 (1962). 
1 D. R. Johnston, G. J. Oudemans, and R. H. Cole, J. Chem. Phys. 33, 

1310 (1960). 
« J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933). 
a G. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677 (1963). 
o M. Born and W. Heisenberg, Z. Physik 23, 407 (1924). 
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TABLE III . Expansion coefficients and orbital contributions in polarizability calculations for inert gas atoms. 

Orbital 

xi = ls 

Orbital 

xi = ls 
x2 = 2s 
x3 = 2px 
xs~2pz 

Orbital 

xi = ls 
X2 = 2S 

xs — 2px 

X5 — 2pz 

x& = 3s 
x-i = 3px 

x% = 3pz 

1 

-0.33290 

1 

-0.01193 
-0.09590 
-0.13843 
-0.13808 

1 

-0.00352 
-0.00777 
-0.02767 
-0.03551 

-13.95020 
-0.69269 
-0.71437 

2 

-0.35258 

2 

-0.03088 
-0.08338 
-0.22481 
-0.07939 

2 

-0.04763 
-0.08075 
-0.08884 
-0.04951 

5.70761 
-0.41923 

0.16057 

Heliuma 

Coefficients15 in hk 
3 

-0.01960 

Neona 

Coefficients13 in hk 
3 

-0.09637 
-0.04529 
-0.08058 
-0.21237 

Argona 

Coefficients15 in hk 
3 

0.14864 
0.09173 

-0.01029 
-0.02603 
-1.66368 

0.12105 
-0.21969 

4 

-0.00603 

4 

0.12242 
0.01282 
0.01755 
0.04825 

4 

-0.75458 
-0.15854 

0.00444 
-0.00882 

0.07700 
-0.03820 

0.02816 

5 

-0.00063 

5 

-0.00282 
-0.00102 
-0.00127 
-0.00360 

5 

0.24633 
0.10019 

-0.00203 
-0.00526 

0.00735 
0.00312 

-0.00121 

a (a.u.) 

1.4865 

a (a.u.) 

0.00081 
0.06997 
0.63783° 
1.41120 

Total 
a = 2.75764 

Aa (a.u.) 

0.00005 
0.00324 
0.01118° 
0.01579 
1.04939 
3.81443° 
6.93559 

Total 
a = 15.6553 

a For the wave function used see Table I. 
b The coefficients correspond to those in Eq. (21) of the text. 
c The contribution of the 2px orbital equals that from the 2py orbital. Similarly, that from the 3px equals that of the 3py, 

calculations and the experimental values whenever they 
are available. Except for lithium isoelectronic sequence 
the values of "other calculations" are taken from the 
review paper by Dalgarno.2 Lithium values are taken 
from Flannery and Stewart.14 For some atoms and ions 
we calculated the polarizabilities with several wave 
functions of different degrees of accuracy in order to 
find out how the polarizability depends on the zeroth 
order wave function. These results are presented in 
Table I I . In this table the column headed 'tyo" gives 
references to the sources of the wave functions used in 
the calculations and the column headed "No. of Basis 
Functions" give the number of fa's used in constructing 
the orbitals #&. Since the polarizability depends 
primarily on the behavior of the outmost electrons, the 
orbital energies of the outmost orbitals are also given. 
To further illustrate the dependence of the polarizability 
on the outer electrons the expansion coefficients and 
orbital contributions for the inert gas atoms are given 
in Table I I I . 

For the calculations presented in Tables I and I I five 
terms are included in the perturbation polynomial, 
Eq. (21). In each case the polarizabilities have con
verged at least to the first three figures though generally 
the convergence is much better. 

A word of explanation seems appropriate for the case 
of the three-, eleven- and nineteen-electron systems 

14 M. R. Flannery and A. L. Steward, Proc. Phys. Soc. (London) 
82, 188 (1963). 

presented here. The theory developed in the previous 
section is specific to problems where all orbitals are 
doubly occupied. However, these systems each contain 
one singly occupied orbital. On carrying out the analysis 
in the same way as previously described one finds no 
change in the procedure as outlined is required except 
that only half the contribution the doubly occupied 
orbital would normally have, were it full, is taken in 
summing Eq. (31) to obtain a. 

A very comprehensive review of previous theoretical 
and experimental polarizability results has been recently 
given by Dalgarno.2 Hence this will be omitted here, 

IV. DISCUSSION 

Comparison of calculated dipole polarizabilities aa 
with experimental values shows that, although reason
able agreements are obtained for lighter atoms, agree
ments become progressively worse for heavier atoms. 
We note that calculated aa for atoms of the first row 
of the periodic table (except the beryllium sequence) 
are in reasonable agreement with experimental values 
whereas calculated ad for atoms of the second and third 
rows are too large by a factor of 1.25 to 1.5. These 
results indicate that the uncoupled Hartree-Fock 
method with the Hartree-Fock wave functions as the 
zero-order functions fails to give accurate values of ad 

for heavier atoms. This failure is largely due to the 
fact that the electron in the Hartree-Fock approxima
tion are not held as tightly as is actually the case, due to 
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the neglect of electron correlation effects and to a small 
extent of relativistic effects. For heavier atoms and ions 
the effect of neglect of electron correlation is to make the 
calculated wave functions too diffuse, so that the 
associated charge cloud becomes more expanded than is 
the experimental situation, an effect which is clearly 
associated with the high calculated values of aa. 

For alkaline earths the situation is even worse. The 
results of the present calculations for Mg and Ca 
differ from the experimental values by a factor of 2.5; 
although there is no experimental value for Be, it is 
reasonable to assume that the calculated aa for Be is also 
too large perhaps by a factor of 2. These large dis
crepancies may be due in part to an incorrect choice of 
the zero-order functions in which the near ns, np 
degeneracy has been neglected.15,16 For example, the 
correct zero-order function of the beryllium sequence is 
not ^fo(ls22s2yS as assumed in the Hartree-Fock 
approximation but the linear combination of 

*o= a&o(ls22s2yS+bVo(ls22p2yS 

which diagonalizes the Hamiltonian matrix. A similar 
argument applies also for the cases of Mg and Ca. 

For negative ions the computed results are not 
reliable. In the first place it is more difficult to obtain 
Hartree-Fock solutions for negative ions than for 
neutral atoms, and even if we do obtain them, they may 
be very far from the exact wave functions, especially 
for the outer electrons. For this reason the result for 
O is not listed in Table I although two values are 
listed in Table II. 

As Goodings17 pointed out, there is a difficulty 
15 D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959). 
16 J. Linderberg and H. Shull, J. Mol. Spectry. 5, 1 (1960). 
17 D. A. Goodings, Phys. Rev. 123, 1706 (1961). 

associated with the analytical method used in this 
study, and that is the difficulty of choosing optimum 
sets of basis functions and assessing the error resulting 
from the limited size of these basis sets. In regard to 
this difficulty we can see from Table II that if un
perturbed wave functions constructed from different 
sets of carefully optimized basis functions are used, then 
the same results are obtained for dipole polarizabilities. 
But we must clearly emphasize the importance of 
careful choice of the self-consistent field wave function 
for use in polarizability calculations. It is necessary to 
use a sufficient number of basis functions in constructing 
the orbitals, and the linear and nonlinear parameters 
must be well optimized. A comparison of the various 
neon and argon calculations suggests that it is as 
important to evaluate the parameters carefully as it is 
to use an adequate number of basis functions. 

For all calculations reported in this work a five term 
perturbation polynomial [Eq. (21)] is adequate for 
insuring convergence to three or more figures in the 
polarizability. We suggest, on the basis of these 
results, that use of a more general r dependence in 
Eq. (21) would not significantly alter the computed 
dipole polarizabilities. Indeed, in most cases three or 
four terms in the r polynomial would have been 
sufficient. 
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